In this chapter, we provide UP Board Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions for Hindi medium students, Which will very helpful for every student in their exams. Students can download the latest UP Board Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions pdf, free UP Board Solutions Class 10 Maths Chapter 5 Arithmetic Progressions book pdf download. Now you will get step by step solution to each question. Up board solutions कक्षा 10 गणित पीडीऍफ़
UP Board Solutions for Class 10 Maths Chapter 5 Arithmetic Progressions
प्रश्नावली 5.1 (NCERT Page 108)
प्र. 1. निम्नलिखित स्थितयों में से किन स्थितयों में संबद्ध संख्याओं की सूची A.P है और क्यों?
(i) प्रत्येक किलों मीटर के बाद टैक्सी का किराया, जबकि प्रथम किलो मीटर के लिए किराया 15 रु है और प्रत्येक अतिरिक्त किलो मीटर के लिए किराया 8 रु है|
(ii) किसी बेलन (cylinder) में उपस्थित हवा की मात्रा, जबकि वायु निकालने वाला पम्प प्रत्येक बार बेलन की हवा का भाग बाहर निकाल देता है|
(iii) प्रत्येक मीटर की खुदाई के बाद, एक कुआं खोदने में आई लागत, जबकि प्रथम मीटर खुदाई की लागत 150 रु है और बाद में प्रत्येक खुदाई की लागत 50 रुo बढ़ती जाती है|
(iv) खाते में प्रत्येक वर्ष का मिश्रधन, जबकि 10000 रुo की राशि 8 % वार्षिक की दर से चक्रवृद्धि ब्याज पर जमा की जाती है|
प्र. 2. दी हुई A.P के प्रथम चार पद लिखिए, जबकि प्रथम पद a और सार्व अंतर d निम्नलिखित हैं :
(i) a = 10, d = 10
(ii) a = -2, d = 0
(iii) a = 4, d = -3
(iv) a = -1, d =
(v) a = -1.25, d = -0.25
प्र. 3. निम्नलिखित में से कौन-कौन A.P हैं? यदि कोई A.P है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन पद लिखिए |
(i) 3, 1, -1, -3, ……
(ii) -5, -1, 3, 7, ……
(iii) , , ,
(iv) 0.6, 1.7, 2.8, 3.9
प्र. 4. निम्नलिखित में से कौन-कौन A.P हैं? यदि कोई A.P है, तो इसका सार्व अंतर ज्ञात कीजिए और इनके तीन पद लिखिए |
प्रश्नावली 5.2 (NCERT Page 116)
प्र. 1. निम्नलिखित सारणी में, रिक्त स्थानों को भरिए, जहाँ A.P का प्रथम पद a, सार्व अंतर d और n वाँ पद an है:
प्र. 2. निम्नलिखित में सही उत्तर चुनिए और उसका औचित्य दीजिए:
(i) A.P: 10, 7, 4, …………………. का 30 वाँ पद है:
(A) 97
(B) 77
(C) -77
(D) -87
प्र. 3. निम्नलिखित समांतर श्रेढ़ी में, रिक्त खानों (boxes) के पदों को ज्ञात कीजिए|
प्र. 4. A.P. : 3, 8, 13, 18, . . . का कौन सा पद 78 है ?
प्र. 5. निम्नलिखित समांतर श्रेढियों में से प्रत्येक श्रेढ़ी में कितने पद हैं ?
(i) 7, 13, 19, …………….. , 205
(ii) 18, 15, 13, ………, -47
प्र. 6. क्या A.P., 11, 8, 5, 2 ……. का एक पद -150 है ? क्यों ?
प्र. 7. उस A.P का 31वाँ पद ज्ञात कीजिए, जिसका 11 वाँ पद 38 है और 16वाँ पद 73 है।
प्र. 8. एक A.P में 50 पद हैं, जिसका तीसरा पद 12 है और अंतिम पद 106 है। इसका 29वाँ पद ज्ञात कीजिए।
प्र. 9. यदि किसी A.P के तीसरे और नौवें पद क्रमशः 4 और -8 हैं, तो इसका कौन-सा पद शून्य होगा?
प्र. 10. किसी A.P का 17 वाँ पद उसके 10वें पद से 7 अधिक है। इसका सार्व अंतर ज्ञात कीजिए।
प्र. 11. A.P. : 3, 15, 27, 39, ……… का कौन-सा पद उसके 54वें पद से 132 अधिक होगा?
प्र. 12. दो समांतर श्रेढि़यों का सार्व अंतर समान है। यदि इनके 100 वें पदों का अंतर 100 है, तो इनके 1000वें पदों का अंतर क्या होगा?
इसलिए, 1000वें पदों का अंतर भी 100 है |
प्र. 13. तीन अंकों वाली कितनी संख्याएँ 7 से विभाज्य हैं?
प्र. 14. 10 और 250 के बीच में 4 के कितने गुणज हैं?
प्र. 15. n के किस मान के लिए, दोनों समांतर श्रेढि़यों 63, 65, 67, ………. और 3, 10, 17, ……… के n वें पद बराबर होंगे?
प्र. 16. वह A.P ज्ञात कीजिए जिसका तीसरा पद 16 है और 7वाँ पद 5वें पद से 12 अधिक है।
प्र. 17. A.P. : 3, 8, 13, …, 253 में अंतिम पद से 20वाँ पद ज्ञात कीजिए।
प्र. 18. किसी A.P. के चौथे और 8वें पदों का योग 24 है तथा छठे और 10वें पदों का योग 44 है। इस A.P. के प्रथम तीन पद ज्ञात कीजिए।
प्र. 19. सुब्बा राव ने 1995 में 5000 के मासिक वेतन पद कार्य आरंभ किया और प्रत्येक वर्ष 200 की वेतन वृद्धि प्राप्त की। किस वर्ष में उसका वेतन 7000 हो गया?
प्र. 20. रामकली ने किसी वर्ष के प्रथम सप्ताह में 5 की बचत की और फिर अपनी साप्ताहिक बचत 1.75 बढ़ाती गई। यदि n वें सप्ताह में उसकी साप्ताहिक बचत 20.75 हो जाती है, तो n ज्ञात कीजिए।
प्रश्नावली 5.3 (NCERT Page 124)
प्र. 1. निम्नलिखित समांतर श्रेढियों का योग ज्ञात कीजिए :
(i) 2, 7, 12, . . ., 10 पदों तक
(ii) -37, -33, -29, . . ., 12 पदों तक
(iii) 0.6, 1.7, 2.8, . . ., 100 पदों तक
(iv) , , , ……., 11
प्र. 2. नीचे दिए हुए योग्फालों को ज्ञात कीजिये:
(i) 7 + 10+ 14 + ….. + 10
(ii) 34 + 32 + 30 + . . . + 10
(iii) -5 + (-8) + (-11) + . . . + (-230)
प्र. 3. एक A.P. में,
(i) a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
(ii) a = 7 और a13 = 35 दिया है। d और S13 ज्ञात कीजिए।
(iii) a12 = 37 और d = 3 दिया है। a और S12 ज्ञात कीजिए।
(iv) a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।
(v) d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
(vi) a = 2, d = 8 और Sn = 90 दिया है। n और an ज्ञात कीजिए।
(vii) a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
(viii) an = 4, d = 2 और Sn = -14 दिया है। n और a ज्ञात कीजिए।
(ix) a = 3, n = 8 और S = 192 दिया है। d ज्ञात कीजिए।
(x) l = 28, S = 144 और कुल 9 पद हैं। a ज्ञात कीजिए।
प्र. 4. 636 योग प्राप्त करने के लिए, A.P. : 9, 17, 25 ……….. के कितने पद लेने चाहिए ?
प्र. 5. किसी A.P. का प्रथम पद 5, अंतिम पद 45 और योग 400 है। पदों की संख्या और सार्व अंतर ज्ञात कीजिए।
प्र. 6. किसी A.P. के प्रथम और अंतिम पद क्रमशः 17 और 350 हैं। यदि सार्व अंतर 9 है, तो इसमें कितने पद हैं और इनका योग क्या है?
प्र. 7. उस A.P. के प्रथम 22 पदों का योग ज्ञात कीजिए, जिसमें d = 7 है और 22 वाँ पद 149 है।
प्र. 8. उस A.P. के प्रथम 51 पदों का योग ज्ञात कीजिए, जिसके दूसरे और तीसरे पद क्रमशः 14 और 18 हैं।
प्र. 9. यदि किसी A.P. के प्रथम 7 पदों का योग 49 है और प्रथम 17 पदों का योग 289 है, तो इसके प्रथम n पदों का योग ज्ञात कीजिए।
प्र. 10. दर्शाइए कि a1, a2, . . ., an, . . . से एक A.P. बनती है, यदि an नीचे दिए अनुसार परिभाषित है:
(i) an = 3 + 4n
(ii) an = 9 – 5n
साथ ही, प्रत्येक स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
प्र. 11. यदि किसी A.P. के प्रथम n पदों का योग 4n – n2 है, तो इसका प्रथम पद (अर्थात् S1 ) क्या है? प्रथम दो पदों का योग क्या है? दूसरा पद क्या है? इसी प्रकार, तीसरे, 10वें और n वें पद ज्ञात कीजिए।
प्र. 12. ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हैं।
प्र. 13. 8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
प्र. 14. 0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
प्र. 15. निर्माण कार्य से सम्बन्धी किसी ठेके में, एक निश्चित तिथि के बाद कार्य को विलंब से पूरा करने के लिए, जुर्माना लगाने का प्रावधन इस प्रकार है: पहले दिन के लिए 200 रु, दूसरे दिन के लिए 250 रु, तीसरे दिन के लिए 300 रु इत्यादि, अर्थात् प्रत्येक उतरोत्तर दिन का जुर्माना अपने से ठीक पहले दिन के जुर्माने से 50 रु अधिक है। एक ठेकेदार को जुर्माने के रूप में कितनी राशि अदा करनी पड़ेगी, यदि वह इस कार्य में 30 दिन का विलंब कर देता है ?
प्र. 16. किसी स्कूल के विद्यार्थियों को उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए 700 रु की राशि रखी गई है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से 20 रु कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
प्र. 17. एक स्कूल के विद्यार्थियों ने वायु प्रदुषण कम करने के लिए स्कूल के अन्दर और बाहर पेड़ लगाने के बारे में सोंचा । यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा । उदाहरणार्थ, कक्षा I का एक अनुभाग एक पेड़ लगाएगा, कक्षा II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा ही कक्षा XII तक के लिए चलता रहेगा । प्रत्येक कक्षा के तीन अनुभाग हैं । इस विद्यालय के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी ?
प्र. 18. केंद्र A से प्रारंभ करते हुए, बारी-बारी से केन्द्रों A और B को लेते हुए, त्रिज्याओं 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm …. वाले उत्तरोत्तर अर्धवृतों को खींचकर एक सर्पिल (spiral) बनाया गया है, जैसा कि आकृति में दर्शाया गया है| तेरह क्रमागत अर्धवृतों से बने इस सर्पिल की कुल लंबाई क्या है ? (π = )
प्र. 19. 200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है: सबसे नीचे वाली पंक्ति में 20 लट्ठे, उससे अगली पंक्ति में 19 लट्ठे, उससे अगली पंक्ति में 18 लट्ठे, इत्यादि (देखिए आकृति )। ये 200 लठ्ठे कितनी पंक्तियों में रखे गए हैं तथा सबसे ऊपरी पंक्ति में कितने लट्ठे हैं?
प्र. 20. एक आलू दौड़ (potato race) में, प्रारंभिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5m की दूरी पर है, तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं (देखिए आकृति)।
प्रत्येक प्रतियोगी बाल्टी से चलना प्रारंभ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है, और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?
प्रश्नावली 5.4 (NCERT Page 127)
प्र. 1. A.P : 121, 117, 113,…., का कौन-सा पद सबसे पहला ऋणात्मक पद होगा ?
[संकेत : an < 0 के लिए n ज्ञात कीजिए|]
प्र. 2. किसी A.P. के तीसरे और सातवें पदों का योग 6 है और उनका गुणनफल 8 है| इस A.P. के प्रथम 16 पदों का योग ज्ञात कीजिए|
प्र. 3. एक सीढ़ी के क्रमागत डंडे परस्पर 25 cm की दुरी पर हैं| (देखिए आकृति 5.7)| डंडों की लंबाई एक समान रूप से घटती जाती है तथा सबसे निचले डंडे की लंबाई 45 cm है और सबसे ऊपर वाले डंडे की लंबाई 25 cm है | यदि ऊपरी और निचले डंडे के बीच की दुरी 2m है, तो डंडों को बनाने के लिए लकड़ी की कितनी लंबाई की आवश्यकता होगी ? [संकेत : डंडों की संख्या = ÷ 1 हैं|]
प्र. 4. एक पंक्ति के मकानों को क्रमागत रूप से संख्या 1 से 49 तक अंकित किया गया है| दर्शाइए कि x का एक ऐसा मान है x से अंकित मकान से पहले के मकानों की संख्याओं का योग उसके बाद वाले मकानों की संख्याओं के योग के बराबर है| x का मान ज्ञात कीजिए|
[संकेत : Sx-1 = S49 – Sx है| ]
प्र. 5. एक फुटबॉल के मैदान में एक छोटा चबूतरा है जिसमें 15 सीढीयाँ बनी हुई हैं| इन सीढीयों में से प्रत्येक की लंबाई 50m है वह ठोस कंक्रीट ( concrete) की बनी है प्रत्येक सीढ़ी में m की चौड़ाई है और m का फैलाव (चौड़ाई) है| (देखिए आकृति 5.8 )| इस चबूतरे को बनाने में लगी कंक्रीट का कुल आयतन परिकलित कीजिए| [संकेत : पहली सीढ़ी को बनाने में लगी कंक्रीट का आयतन = x x 50 m3 है|]
All Chapter UP Board Solutions For Class 10 Maths Hindi Medium
—————————————————————————–
All Subject UP Board Solutions For Class 10 Hindi Medium
*************************************************
I think you got complete solutions for this chapter. If You have any queries regarding this chapter, please comment on the below section our subject teacher will answer you. We tried our best to give complete solutions so you got good marks in your exam.
यदि यह UP Board solutions से आपको सहायता मिली है, तो आप अपने दोस्तों को upboardsolutionsfor.com वेबसाइट साझा कर सकते हैं।